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ABSTRACT

Accumulation of proteinaceous amyloid b plaques and tau oligomers may occur several years before the onset of Alzheimer disease (AD). Under

normal circumstances, misfolded proteins get cleared by proteasome degradation, autophagy, and the recently discovered brain glymphatic system,

an astroglial-mediated interstitial fluid bulk flow. It has been shown that the activity of the glymphatic system is higher during sleep and disengaged

or low during wakefulness. As a consequence, poor sleep quality, which is associated with dementia, might negatively affect glymphatic system

activity, thus contributing to amyloid accumulation. The diet is another important factor to consider in the regulation of this complex network. Diets

characterized by high intakes of refined sugars, salt, animal-derived proteins and fats and by low intakes of fruit and vegetables are associated with a

higher risk of AD and can perturb the circadianmodulation of cortisol secretion, which is associated with poor sleep quality. For this reason, diets and

nutritional interventions aimed at restoring cortisol concentrations may ease sleep disorders and may facilitate brain clearance, consequentially

reducing the risk of cognitive impairment and dementia. Here, we describe the associations that exist between sleep, cortisol regulation, and diet

and their possible implications for the risk of cognitive impairment and AD. Adv Nutr 2016;7:679–89.
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Introduction
Late-onset Alzheimer disease (AD)8 is a progressive neuro-
degenerative syndrome, mostly occurring after 65 y of age
and characterized by the accumulation of proteinaceous am-
yloid b (Ab) plaques and formation of neurofibrillary tangles
(1, 2). The disease sequelae often include the development of
a progressive cerebral atrophy, cognitive decline, and ulti-
mately death (3).

Formation of both Ab plaques and neurofibrillary tangles
seems to be part of the normal aging process, as revealed by
brain immunohistochemical analyses of cognitively normal
older people (4).

Ab and tau oligomers get physiologically cleared by
ubiquitination-proteasome degradation, sumoylation, and
autophagy (5, 6). If these process results are inefficient, pro-
tein aggregates can progressively accumulate, causing neu-
ronal degeneration (6–9).

In addition, the recently discovered glymphatic system,
an astroglial-mediated interstitial fluid bulk flow, was shown
to play a key role in the regulation of amyloid clearance from
the brain by the perivascular space surrounding brain blood
vessels (10, 11). This system also plays a role in the brain-
wide distribution of growth factors, neuromodulators, glu-
cose, lipids, and amino acids (12). Importantly, the activity
of the glymphatic system is higher during sleep and lower
(or disengaged) during wakefulness (12). This has special
relevance for AD because sleep disorders, such as obstructive
sleep apnea (OSA), are associated with the onset of demen-
tia (13–15). In particular, sleep disorders are shown to com-
promise the normal functioning of the glymphatic system
and, as a consequence, contribute to the accumulation of
misfolded proteins (16).
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Western and/or poorly balanced diets, characterized by
high intakes of refined sugars, animal-derived proteins, and
saturated fats and a concomitant low intake of plant-based
foods, are known to be associated with higher risk of AD
(17–20) and can increase the secretion of glucocorticoids
(e.g., cortisol), catecholamine, and serotonin, causing oxidative
stress (21, 22). Deregulated circadian cortisol concentrations
are associated with mild cognitive impairment (MCI) and
AD, suggesting that glucocorticoids and cortisol, in particular,
may play a role in the onset and/or the progression of AD (23).

Deregulated cortisol concentrations are also correlated
with poor sleep quality (24), and even partial acute sleep
loss may deregulate cortisol release (25). Nutritional inter-
ventions aimed at restoring cortisol concentrations may
positively influence sleep quality, thus promoting the regu-
lation of brain clearance systems and a reduction of brain
amyloids and, consequentially, reduce the risk of cognitive
impairment and dementia. Here, we discuss the role of sleep
in the regulation of the glymphatic system and amyloid
clearance, the associations between deregulated cortisol con-
centrations and sleep, and the possible implications for the
risk of cognitive impairment and AD, highlighting the role
of diet in the modulation of these factors.

Sleep Disorders Are Correlated with the Risk of
AD
Lifestyle risk factors associated with AD: a focus on sleep
disorders. It was hypothesized that ADmight be much more
complex than an amyloidosis- and tauopathy-related syn-
drome. Although advancing age is considered the main
risk factor for developing late-onset AD (26–28), strong ev-
idence suggests that AD is strongly correlated with diabetes
and the metabolic syndrome (20, 29–35) and cardiovascular
diseases (36–49), suggesting the involvement of systemic,
metabolic, and multifactorial mechanisms in the etiopatho-
genesis of AD. Among the risk factors that were implicated
in the pathogenesis of type 2 diabetes, metabolic syndrome,
and AD, insulin resistance, imbalance of glucocorticoid con-
centrations, inflammation, dysfunctions of mitochondrial
metabolism, oxidative stress, and hyperhomocysteinemia
were reported to play a main role (50–52).

In addition, specific dietary patterns can play a role in
the onset of neurodegeneration and dementia (18, 19),
such as a low intake of plant-derived foods, which was re-
lated to a higher risk of diabetes, metabolic syndrome, and
dementia (20).

In addition, sleep disorders seem to play an important
role in the onset of AD (13–15). Differences in sleep patterns
seem more prominent during the early stages of dementia
than during later stages (53). However, a 2012 clinical
cross-sectional study that involved 431 patients (204 affected
by AD, 138 withMCI, 43 with vascular dementia, 25 with fron-
totemporal dementia, and 21 with Lewy body or Parkinson
disease) measured several types of sleep disturbances (i.e.,
sleep-disordered breathing, rapid eye movement behavior dis-
order, restless legs syndrome, and excessive daytime sleepiness)
and reported that patients affected by MCI or by AD had the

same frequency of sleep disturbances of any type (;65% prev-
alence) (54). Analogously, another epidemiologic study of 236
patients affected by different subtypes of dementia showed that
insomnia, in particular, was mostly present in persons affected
by AD and that persons affected by MCI had the same fre-
quency of any sleep disturbance as AD patients (55).

Among sleep disorders, OSA is characterized by impaired
delivery of oxygen (i.e., hypoxia and hypoxemia), which
perturbs neuronal homeostasis, and triggers neuronal degener-
ation and apoptosis (3). Hypoxia and hypoxemia are correlated
with sympathetic activation, neuroinflammation, oxidative
stress, and several other pathologic perturbations that cause
neurodegeneration (3) and late-onset AD (56).

Sleep restriction can also decrease insulin sensitivity, as
reported in healthy subjects (57, 58). Further studies that en-
rolled higher numbers of participants should be conducted
to confirm these observations.

Pharmacologic treatments of sleep disturbances (e.g., mel-
atonin, benzodiazepines, non-benzodiazepine hypnotics,
trazodone, and ramelteon) in subjects affected by AD were
shown inconclusive and were characterized by uncertainty
about the balance of benefits and the risks associated with
these treatments, as reported by an analysis of all relevant ran-
domized controlled trials that compared the effects of drugs
with placebo (59). Only in the case of a low dose of trazodone
(i.e., 50 mg administered at night for 2 wk) was some evi-
dence of efficacy, although larger clinical trials will be needed
to allow more definitive conclusions and to establish actual
risks and benefits (59).

A recent randomized, double-blind, parallel-group study
conducted with 80 patients diagnosed with mild-to-moderate
AD, with or without insomnia comorbidity, and receiving
standard treatments (i.e., acetylcholinesterase inhibitors,
with or without memantine) reported that treatment with
prolonged-release melatonin (2 mg, administered nightly
for 24 wk, followed by 2 wk of placebo) could improve cog-
nitive functioning and sleep quality compared with placebo,
and positive effects were particularly evident in those patients
who presented with insomnia comorbidity (60).

However, the use of benzodiazepine might increase the
risk of AD, as shown in 1796 subjects with a first diagno-
sis of AD compared with 7184 matched controls, who
started using benzodiazepines $5 y before the diagnosis
of AD (61). For this reason, long-term use of benzodiaz-
epines should be considered as a possible public health
concern (61), and their long-term use should not be
encouraged (62).

Glymphatic system and role of sleep in the regulation of
amyloid clearance. The glymphatic system, which was first
described in 2012, is known to control interstitial solute and
fluid clearance from the brain. This system is an interstitial
fluid bulk that was shown to regulate brain amyloid clear-
ance by the perivascular space that surrounds cerebral blood
vessels (10, 11, 63, 64). As a consequence, dysfunctions of
the glymphatic systems might play a role in the onset or con-
solidation of AD and dementia.
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The glymphatic system constitutes perivascular tunnels
formed by astroglial cells, and its bulk flow is driven by cere-
brovascular pulsation and facilitated by aquaporin-dependent
astroglial water flux (65). The glymphatic system plays a role
not just in the elimination of soluble proteins and metab-
olites from the brain but also in the brain-wide distribution
of growth factors, neuromodulators, glucose, lipids, and
amino acids (12). The activity of the glymphatic system
was analyzed in rat models (66, 67); however, to date no
clinically approved approaches are developed to evaluate
the functionality of the glymphatic system in humans.

Interestingly, dysfunctions of the glymphatic system were
recently hypothesized to play a role in glaucoma pathogen-
esis (68), which is characterized by a progressive degenera-
tion of retinal ganglion cells and accumulation of Ab, which
suggests possible associations with AD (69, 70).

The activity of the glymphatic system is higher during
sleep or anesthesia and lower or disengaged during wakeful-
ness (12). Accordingly, sleep plays a critical role in ensuring
brain metabolic homeostasis and clearance of potentially
neurotoxic waste products, such as amyloids (64). This has
special relevance for AD, because sleep disorders, such as
OSA and insomnia, are associated with the onset of demen-
tia (13–15, 54, 55), as reported in the previous section. As a
consequence, sleep disorders might compromise the normal
functioning of the glymphatic system and contribute to the
accumulation of misfolded proteins in the brain (16). Ac-
cordingly, sleep disorders seem to be associated with early
deposition of Ab plaques (71, 72). In particular, OSA was
shown to induce Ab accumulation, hyperphosphorylation
of tau, and synaptic dysfunction (56).

Increased stress and decreased sleep were both linked to
accumulations of Ab in animal models (73, 74), and sleep
was shown to regulate several synaptic markers inDrosophila
and possibly the metabolism of a number of central nervous
system proteins (75, 76).

In addition, body posture during sleep seems to matter. In
particular, lateral position, compared with the supine or prone
positions, may increase glymphatic transport, as reported in
rats (77). Future studies should be conducted to confirm
the possible relevance of these observations in humans.

Impact of sleep disorders on hippocampal volume. Sleep
and sleep deprivation exert a bidirectional control on
hippocampus-dependent memory consolidation, by mod-
ulating signaling pathways that regulate synapsis formation
and plasticity (78).

Smaller hippocampal volumes were associated with AD
(79–81), neurodegenerative and psychiatric diseases, and
mild cognitive impairment (82), and were linked to lower
sleep efficiency (82). Accordingly, patients with primary in-
somnia, compared with control subjects, were characterized
by bilateral atrophy of the hippocampus and cognitive im-
pairment (i.e., reduced verbal memory, verbal information
processing, and verbal fluency), suggesting that patients af-
fected by chronic sleep disturbances might be at higher
risk of cognitive impairment (83).

Both the dentate gyrus of the hippocampus and the sub-
ventricular zone of the lateral ventricles are implicated in
adult neurogenesis (84–86), which plays a key role, particu-
larly in the case of the hippocampus, in the maintenance of
memory processes and the regulation of emotionality (87).
In line with this, it is hypothesized that prolonged sleep re-
striction or disruption may drive a cumulative decrease of
hippocampal neuronal cell proliferation, decrease of neuro-
nal cell survival, and neurogenesis (87).

Some observational studies and preliminary clinical trials
have suggested that some modifiable factors, such as cognitive
stimulation, physical exercise, and the treatment of general
medical conditions associated with reduced hippocampal vol-
ume and hippocampal atrophy (e.g., obesity, diabetes, hyper-
tension, hypoxic brain injury, OSA, bipolar disorder, cognitive
decline, depression, and head trauma) can reverse hippocam-
pal atrophy or even expand hippocampal size (88).

Diet and Specific Nutrients Can Affect Cortisol
Regulation, Sleep Quality, and the Risk of AD
Deregulated cortisol concentrations can play a role in the
onset of AD: possible associated mechanisms. Cortisol is a
glucocorticoid hormone produced in humans by the adrenal
cortex within the adrenal gland in response to stress and low
concentration of blood glucose. Its release is mediated by the
hypothalamic-pituitary-adrenal (HPA) axis and follows a
circadian rhythm characterized by a morning peak [or corti-
sol awakening response (CAR)], a slow decline throughout
the day, and a low or undetectable amount at midnight
(89). The hippocampus and other brain structures, such as
the amygdala, the prefrontal cortex, and the suprachiasmatic
nucleus, play a role in the physiologic regulation of CAR (90).

High diurnal salivary cortisol concentrations were de-
scribed in subjects affected by amnestic MCI (91, 92), in
cognitively normal elderly individuals who experienced subjec-
tive memory complaints (93), in nondepressed community-
dwelling elderly people (94), especially if homozygous for
the apoE e4 allele (95), and in subjects affected by AD and their
caregivers (96–98).

Conversely, another study reported that subjects affected
by MCI had cortisol concentrations similar to concentrations
of the normal elderly group, but lower than young controls
(99). Possible conflicting data might be due to differences
in study design, such as the time of sampling (i.e., daytime
compared with nighttime) and even the season, because cor-
tisol concentrations can change according to seasons (100).

The hippocampus contains a high concentration of cor-
ticosteroid receptors and, for this reason, is particularly re-
sponsive to cortisol (81), dehydroepiandrosterone sulfate
(DHEAS), and other stress hormones that are known to regu-
late hippocampal plasticity, excitability, long-term potentiation,
and depression (101). Opposite to acute glucocorticoid eleva-
tions, which were shown to play protective effects (102),
chronic release of high glucocorticoid and high nocturnal cor-
tisol concentrations were associated with smaller hippocampal
volumes (103, 104). In addition, high cortisol concentrations, in
association with reduced hippocampal volumes and cognitive
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decline, were observed in patients with AD (105, 106), eventu-
ally presenting a parallel reduction of DHEAS secretion (101).
Accordingly, plasma cortisol and apo A-II, as well as several
other cerebrospinal fluid markers (e.g., fibroblast growth factor
4, heart-type FA binding protein, calcitonin, and tumor necrosis
factor-related apoptosis-inducing ligand receptor 3) could serve
as useful biomarkers to predict midterm progression fromMCI
to AD, as shown in a recent cohort study that enrolled 928 pa-
tients withMCI at baseline (107). Analogously, high cerebrospi-
nal fluid cortisol concentrations were found associated with
more rapid clinical worsening and cognitive decline in MCI-
AD, suggesting that dysregulation of the HPA axis may occur

at early (MCI) stage of AD, possibly accelerating disease pro-
gression (23). In addition, high concentrations of morning basal
cortisol were associated with lower cognitive functions in post-
menopausal women (108).

Activation of plasmamacrophages and brain microglia can
cause release of proinflammatory cytokines, leading to hyper-
secretion of cortisol, possibly contributing to the progress
from depression to dementia (109). High cortisol concentra-
tions can also downregulate the synthesis of neurotrophic fac-
tors and inhibit neuronal repair mechanisms (109).

High concentrations of glucocorticoids and, in particu-
lar, cortisol were reported in subjects affected by other

FIGURE 1 Schematic representation of the complex network underlying the onset of cognitive impairment and eventually AD.
Imbalanced, Western-like, high-fat diets elicit deregulation of the HPA axis and of GC (e.g., cortisol) release and lower hippocampal
volumes, besides inducing a plethora of other effects (e.g., insulin resistance, inflammation, microglia activation, cognitive impairments,
dysfunction of mitochondria metabolism, oxidative stress, hyperhomocysteinemia, and metabolic acidosis), which typically characterize
type 2 diabetes, metabolic syndrome, and AD. Deregulation of cortisol release can affect sleep quality, reduce hippocampal volume,
promote the accumulation of Ab plaques and other metabolites, downregulate the synthesis of neurotrophic factors, and inhibit
neuronal repair mechanisms. Sleep disorders may themselves compromise cortisol release; reduce hippocampal volume and plasticity;
induce cognitive and memory deficits; elicit hypoxia and hypoxemia (which is responsible for increased brain acidosis, neuronal
degeneration, inflammation, oxidative stress, induction of asparaginyl endopeptidase activity, and increase of phospho-tau); increase
hypertension and hypoperfusion, endothelial dysfunctions, inflammation, cortical and hippocampal hypometabolism, and insulin
resistance; and reduce the functionality of the glymphatic system. Deregulations of the glymphatic system can cause accumulation of
Ab plaques and other metabolites; reduce the distribution of growth factors, neuromodulators, glucose, lipids, and amino acids; and
can contribute to glaucoma pathogenesis. Some dietary interventions and supplements (indicated in green), such as plant-based and
Mediterranean (healthy) diets, PS and v-3 PUFAs, melatonin, creatine, magnesium, potassium, flax seed cultivars, and inhibitors of GC
release, in combination with cognitive stimulation and physical exercise, can soothe $1 of these risk factors and, for this reason, might
be considered as nonpharmacologic interventions aimed at preventing the risk of AD or reducing its symptoms. Ab, amyloid b; AD,
Alzheimer disease; AEP, asparaginyl endopeptidase; APP, amyloid precursor protein; Cx, cortex; DHEAS, dehydroepiandrosterone
sulfate; GC, glucocorticoid; GF, growth factor; Glu, glucose; HPA, hypothalamic-pituitary-adrenal; Hyper-HCys, hyperhomocysteinemia;
OSA, obstructive sleep anea; PS, phosphatidylserine.
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hypercortisolemic diseases, such as Cushing disease and
depression. Elevated cortisol concentrations in Cushing
disease were found associated with cognitive decline, in
particular with a reduction of verbal learning, several sub-
tests of learning, delayed recall, and visual–spatial ability, as
shown in 48 patients with a first episode of acute, untreated
Cushing disease compared with 38 healthy control subjects,
suggesting an impairment of both the neocortex and
hippocampus (110).

However, although individuals affected by Cushing dis-
ease and depression present constantly elevated concentra-
tions of cortisol, mild-to-moderate AD stages are generally
characterized by hyperactivity of the HPA axis, a perturba-
tion of the circadian rhythm of cortisol release, and an insuf-
ficiency of glucocorticoid receptor signaling (111).

In addition, it was reported that high glucocorticoid and
cortisol concentrations may contribute to amyloid formation
and may potentiate their toxicity (112, 113). Conversely,
DHEA and DHEAS or even inhibition of glucocorticoid re-
lease may have neuroprotective effects (113–115).

Glucocorticoids were reported to elevate Ab production
by increasing amyloid precursor protein expression also in
primary cultures of astrocytes (116), and activated astrocytes
were shown to contribute to Ab production (117).

Moreover, deregulated cortisol concentrations were
shown correlated with diminished sleep quality and insom-
nia (24), which are associated with AD (55), as we commented
in the previous paragraph. However, even partial acute sleep
loss can alter the negative glucocorticoid feedback regulation,
inducing elevation of cortisol the next evening (25).

Importantly, Western diet and, more in general, low-
quality dietary patterns, characterized by high consump-
tion of meat, saturated fat, and refined sugars, are known
to be associated with obesity, diabetes, lower cognitive
function, reduction of hippocampal volumes, and AD
(118). In the next sections we discuss how specific dietary
patterns and nutritional interventions can affect cortisol
regulation, possibly affecting sleep quality, which might
have implications for the risk of cognitive impairment
and AD.

Effects of diet in the modulation of circadian cortisol
concentrations. Dietary composition plays an important
role in the regulation of glucocorticoid and cortisol release.
In particular, Western-like diets, characterized by high in-
takes of refined carbohydrates, animal proteins, and satu-
rated fats and low intake of plant-based nutrients, fibers,
and antioxidants, which are associated with a higher risk
of AD (17–20), can upregulate the release of cortisol, cate-
cholamine, and serotonin, causing oxidative stress (21, 22).

It was reported that an isocaloric high-protein diet can
increase the amount of cortisol and also of lean body
mass, total ghrelin (also known as the “hunger hormone"),
growth hormone, and testosterone, as shown in untrained
healthy young men (119). In addition, increased intakes of
saturated fats were reported to elevate salivary cortisol, as
shown in subjects at risk of psychosis (120).

Diets characterized by intakes high in fat and low in
fruit and vegetables can decrease CAR and can deregulate
cortisol diurnal profile, as reported by an observational
study of 24 young adults (aged 18–22 y), who were com-
pared with 48 community-dwelling older adults (aged
65–88 y) (121).

It should be considered that the association between
diet and glucocorticoid release is bidirectional; that is,
not only the diet can influence glucocorticoid and corti-
sol release, but also deregulated glucocorticoid and corti-
sol concentrations can increase the craving for and
consumption of low-quality foods, rich in calories, sugar,
and fat (102, 122).

Furthermore, Western-like diets, typically rich in animal
proteins and salt and deficient in fruit and vegetables, are
typically acidogenic; that is, they can cause a subclinical or
low-grade state of metabolic acidosis (123, 124). This meta-
bolic acidosis is responsible for increased bone resorption
and loss of calcium from bone tissue (22), loss of muscular
mass, sarcopenia, negative nitrogen balance (125), and can-
cer formation (124). In addition, conditions of brain acido-
sis occur on brain ischemia and hypoxia (126), particularly
in association with hyperglycemia and diabetes (127). Under
acidic conditions, some AD-related enzymes have shown al-
tered activities, such as the asparaginyl endopeptidase, which
results more active in the presence of acidosis, consequen-
tially leading to tau hyperphosphorylation, as shown in his-
topathologically confirmed AD brain tissues and in SH-SY5Y
cells in vitro (127). In addition, brain acidosis can cause en-
dothelial cell and cholinergic neuron degeneration, as shown
in an organotypic brain slice model made with brain capillary
endothelial cells and cholinergic neurons cultured in medium
at pH < 6.6 (128).

Importantly, acid-base balance can also influence adrenal
hormone production of cortisol. Indeed, a reduction of bi-
carbonate concentrations can stimulate the kidneys to upre-
gulate glutaminase activity and to produce cortisol (129). In
this regard, a protein-rich diet, low in organic potassium
salts, was reported to cause a moderate metabolic acidosis
associated with an increase in cortisol production and a con-
sequential increased risk of insulin resistance and type 2 di-
abetes (130). Accordingly, some studies have reported that a
transiently induced metabolic acidosis, as a consequence of a
high protein meal intake, can enhance serum and salivary
cortisol concentrations in a dose-dependent manner (131).

Considering these bidirectional mechanisms and the im-
portant role played by cortisol on sleep regulation, it is con-
ceivable that unbalanced/Western-like diets, by inducing
metabolic and brain acidosis, might lead to an alteration
of the circadian rhythm of cortisol release, which may affect
sleep quality. These effects might be implicated in the onset
of AD and cognitive impairment (Figure 1). However, to
our knowledge to date no studies directly assess these asso-
ciations in large cohorts of elderly, MCI, or AD subjects. In
the next section we highlight how specific nutritional inter-
ventions or supplements can positively modulate cortisol
concentrations and ameliorate sleep quality.
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Effects of dietary and nutritional interventions on corti-
sol regulation, sleep quality, and cognitive functions.
Specific dietary and nutritional interventions might reverse
metabolic acidosis, possibly restoring cortisol regulation,
sleep quality and, consequentially, may preserve cognitive
functions or reduce cognitive impairments.

High adherence to a healthy, well-balanced diet charac-
terized by adequate intakes of fruits, vegetables, whole grains,
and fish and moderate/low consumption of saturated fat,
trans fat, dietary cholesterol, refined sugars, and salt, as
recommended by the American Heart Association, was
reported to reduce urinary cortisol concentrations and
to elevate serum DHEAS in women, although reducing
urinary norepinephrine values in men, as shown in 1318
Puerto Rican adult subjects living in Boston, MA (132).

Analogously, adherence to a Mediterranean diet, with a
high intake of MUFAs, seems to positively modulate the
HPA axis and cortisol regulation and induce lower abdom-
inal fat distribution, as reported in a cohort of women
from a Mediterranean area (Murcia, Spain) (133). In addi-
tion, Mediterranean dietary intervention composed of pre-
dominantly plant-based foods (i.e., vegetables, fruits, olive
oil, legumes, whole-grain cereals, nuts, and seeds) and fish
and a low intake of processed foods, dairy products, red
meat, and vegetable oils induced an amelioration of cogni-
tive performances, a reduction of inflammation, and oxida-
tive stress and improved psychological well-being factors
(e.g., sleep, stress, anxiety, and depression), as shown in el-
derly healthy Australians (134).

On the contrary, high-fat diets can have a profound impact
on microglia activation and the maintenance of cognitive
functions. High-fat diets can induce hippocampal inflamma-
tory cytokine production, loss of synaptic protein expression,
impairment of hippocampus-dependent memory, and reduc-
tion of long-term potentiation in mice (135). Similarly, diet-
induced hypercholesterolemia was found to increase both Ab
and phospho-tau and induce microglial activation in Ab25–35-
injectedmice, resulting in spatial learning andmemory deficits
(136). However, because most of these studies were conducted
in animal models, it will be important to confirm these results
in humans.

Moreover, specific nutrients and supplements were re-
ported to positively affect cortisol regulation and, for this
reason, might be suitable to improve sleep quality. For in-
stance, flax seed cultivars, in particular Linola 989, the strain
with the highest content of lignan and the lowest content of
a-linolenic acid, were reported to reduce responses to stress
and plasma cortisol concentrations in 35 postmenopausal
women with vascular disease (137). However, the possible
effects of flax seed cultivars on sleep regulation and quality
were not reported in this study.

Supplementations with the phospholipid phosphatidyl-
serine, together with omega-3 PUFAs 3 times/d for 12 wk
were shown to reduce cortisol basal concentrations and to
regulate circadian rhythm of salivary cortisol, reducing
symptoms in elderly subjects with major depression (138).

For this reason, phosphatidylserine alone or in combination
with v-3 PUFAs might positively regulate sleep quality, pre-
serving or increasing brain functions (139). A study reported
that bovine cortex-derived phosphatidylserine supplementa-
tion for 12 wk induced an improvement of both standard
and computerized neuropsychological performance tests in
elderly patients with MCI, compared with control subjects
who were administered a placebo (140). Similar results were
observed with different phosphatidylserine preparations, alter-
native to the use of bovine cortex-derived phosphatidylserine
that might raise concerns of prion transmission. In this regard,
a phosphatidylserine preparation that contained v-3 PUFAs
attached to the phosphatidylserine backbone and supple-
mented for a period of 6 wk (141), or for 7 and 15 wk
(142), was proven effective in nondemented elderly subjects
with memory complaints. Analogous effects were described
with a soybean-derived phosphatidylserine, administered daily
for 12 wk to elderly volunteers withmemory complaints (143).

In addition, magnesium deficiency is strongly correlated
with insomnia, and deficit of magnesium, coupled with ex-
cess of calcium, may cause major depression and mental
health problems (144). A 2012 clinical trial conducted in
46 elderly subjects showed that daily supplementation of
500 mg Mg compared with placebo for 8 wk significantly
increased sleep time, sleep efficiency, the concentration of
serum renin, and melatonin and significantly decreased se-
rum cortisol concentration (145).

In addition, potassium is important to guarantee sleep
duration, as reported in young men taking oral potassium
chloride supplements for 1 wk compared with identical pla-
cebo capsules (146). Direct effects of potassium supplemen-
tation on cortisol regulation were not reported in this study,
although there is evidence that potassium supplementation
can elevate serum cortisol (147).

Sleep deprivation can cause a decrease of creatine in the
brain, negatively affecting cognitive and psychomotor per-
formance, and mood state. Therefore, creatine supplemen-
tations might help reduce these negative effects. In this
regard, double-blinded intervention studies assessed the ef-
fects elicited by creatine monohydrate (5 g supplemented 4
times/d for 1 wk) compared with placebo and showed that
after 24-h sleep deprivation, with mild or moderate exercise,
creatine supplementation ameliorated cognitive and psycho-
motor performance and eventually mood state, although
plasma concentrations of catecholamines and cortisol did
not differ in the 2 groups (148, 149).

Further Considerations
The risk of dementia and sporadic/late-onset AD is strongly
associated with lifestyle factors. In particular, diet, sleep
quality, and circadian cortisol regulation, which have been
indicated as possible risk factors for AD (13–15, 18–20,
53, 96, 97), are known to be interconnected by regulatory
patterns. Another important aspect in this complex network
is the recently discovered glymphatic system, which is
known to play a role in the clearance of misfolded proteins
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from the brain and is known to be functional during sleep
(10–12, 63–65).

Perturbations of either one of these variables might have
an impact on the others and were found to be associated
with hippocampal volume reduction (82, 83, 90) and conse-
quentially cognitive impairment and/or AD (79–81).

Considering the pivotal role played by diet in the initia-
tion or consolidation of cognitive impairment and dementia
(17–20), it is conceivable that poorly balanced nutritional
patterns, with high intakes of refined sugar, animal pro-
ducts, high-calorie foods, and saturated fats, by negatively
influencing the circadian rhythm of cortisol release, might
perturb sleep quality, thus contributing to the impairment
of amyloid clearance pathways (e.g., the glymphatic system),
the accumulation of amyloids, and the reduction of hippo-
campal volumes (Figure 1). However, it should be consid-
ered that to date no studies describe a direct effect of
deregulated cortisol concentrations on the glymphatic
system.

In addition, considering that there are no clinically ap-
proved approaches to evaluate the functionality of the
glymphatic pathway in humans, current and future research
efforts should aim at assessing, by mean of neuroimaging
readouts, the effects of dietary interventions in the regulation
of the glymphatic system, Ab clearance, and brain metabo-
lism in MCI and AD patients.

Another aspect to consider that deserves further exten-
sive dissertation is the role of physical activity in the regula-
tion of circadian cortisol rhythm, sleep, cognition, and the
prevention of AD, as recently indicated (91).

In addition, intervention strategies aimed at modulat-
ing endogenous neurogenesis through the use of neural
stem cell-based therapies (150), lifestyle intervention strat-
egies, or pro-neurogenic factors (151, 152) may help pro-
mote the regenerative and recovery process in the aging
brain (153).

In conclusion, multidisciplinary approaches that involve
strategies aimed at promoting healthy lifestyle and that reduce
comorbidity-related neurotoxicity and neurodegeneration
could be successful in delaying the onset of cognitive im-
pairment and dementia, as recently shown (154). Similar
initiatives are currently encouraged and supported both
in Europe (155, 156) and in the United States (157). Fur-
ther research is clearly needed to define intervention strat-
egies aimed at ameliorating diet and sleep quality and to
provide recommendations to implement preventative and
therapeutic strategies.
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