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SUMMARY

Covertmotor learningcan sometimes transfer toovert
behavior. We investigated the neural mechanism
underlying transfer by constructing a two-context
paradigm. Subjects performed cursor movements
either overtly using arm movements, or covertly via a
brain-machine interface that moves the cursor based
on motor cortical activity (in lieu of arm movement).
These taskshelpedevaluatewhether andhowcortical
changes resulting from ‘‘covert rehearsal’’ affect overt
performance. We found that covert learning indeed
transfers to overt performance and is accompanied
by systematic population-level changes in motor pre-
paratory activity. Current models of motor cortical
function ascribe motor preparation to achieving initial
conditions favorable for subsequent movement-
period neural dynamics. We found that covert and
overt contexts share these initial conditions, and
covert rehearsal manipulates them in a manner that
persists across context changes, thus facilitating
overt motor learning. This transfer learning mecha-
nismmight provide new insights into other covert pro-
cesses like mental rehearsal.

INTRODUCTION

Understanding motor-related covert mental processes, such as

imagined or intendedmovements, andmental rehearsal is tanta-

lizing as these internal behaviors have been shown to exhibit

varying degrees of motor learning transfer (Denis, 1985; Papax-

anthis et al., 2002). Decades of human behavioral studies have

shown that mental rehearsal can improve motor skills such as

throwing darts or making free throws (Feltz and Landers,

1983), and mental rehearsal has also been shown to sometimes
aid in rehabilitation (Warner andMcNeill, 1988; Buch et al., 2008;

Saposnik et al., 2010; Silvoni et al., 2011). Working theories posit

that motor learning transfer is a result of covert learning engaging

neural population activity similar to that employed during overt

practice. In support of this, ‘‘mirror neurons’’ in ventral premotor

cortex have been shown to discharge both when actions are

overtly performed and when they are observed (Rizzolatti et al.,

2001). These results, however, are still debated (Hickok, 2009)

and do not propose mechanistic hypotheses about why neural

similarity is helpful for learning transfer.

This debate stems primarily from the fact that mental

rehearsal, and covert processes in general, are difficult to

define and even more challenging to experimentally study.

They are open-loop hidden processes, where experimenters

cannot directly observe the internal process or the trial-by-trial

progression of learning. In this study, we present a covert

process that enables a direct and real-time probe into this

evolution, by ‘‘closing the loop.’’ We use a brain-machine

interface (BMI), which takes as input neural activity from dorsal

premotor and primary motor cortex. This neural activity is

mapped through a fixed mathematical function, i.e., ‘‘decoder,’’

to produce a two-dimensional cursor movement. This defines a

closed-loop system by which subjects receive visual feedback

of the on-screen cursor, and the experimenters observe both

the behavior and the evolving neural activity on a trial-by-trial

basis. The BMI context elicits internal motor processes that

share an end-goal with overt processes because subjects

use the decoder (i.e., neural activity without overt movements)

to make the same cursor movements as they will perform sub-

sequently using arm movements. We constructed the decoder

by associating the kinematics of automated cursor movements

with neural activity recorded while subjects observed these

movements (Gilja et al., 2012). This was done in contrast to

using neural activity measured during overt movements. Previ-

ous findings have shown that neural signals involved in watch-

ing cursor movements are engaged in mental rehearsal and

involve many of the same cells as when generating movement

(Cisek and Kalaska, 2004).
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The BMI paradigm is a powerful tool for studying learning

because the decoder establishes a causal link between behavior

(i.e., cursor movements), and all the neurons directly responsible

for producing that behavior. Thus, the only way to modify the

behavior is to causally modify the input neurons to the decoder.

Several groups have used BMIs to dissect a variety of sensori-

motor and learning processes (recent germane studies include

Jarosiewicz et al., 2008; Ganguly and Carmena, 2009; Ganguly

et al., 2011; Orsborn et al., 2014; Sadtler et al., 2014; Golub

et al., 2015, 2018; Athalye et al., 2017; Prsa et al., 2017).

Here, we use BMIs to establish a ‘‘covert rehearsal’’ paradigm

whereby subjects can ‘‘practice’’ or in a sense ‘‘rehearse’’ a

motor task directly using their neural activity without movement

(i.e., covertly). We can then evaluate the degree of learning trans-

fer by having the subjects repeat the same task using overt

movements.

In this non-human primate study, we cannot definitively

equate covert rehearsal to imagined movements or mental

rehearsal (though this may well be what the monkeys are doing).

Critically, covert rehearsal differs from mental rehearsal in that it

provides the monkeys with real-time visual feedback of the

on-screen cursor. This design, however, is intentional as it pro-

vides a first-ever direct probe into studying the single-trial neural

(and behavioral) correlates of covert learning. Thus, the goal of

this study is to use the covert rehearsal paradigm to evaluate

two key scientific questions underlying most covert processes:

(1) can covert processes (which covert rehearsal is a type of)

facilitate overt motor learning, and (2) if so, what neural mecha-

nism mediates this transfer? If covert processes can facilitate

overt learning, we expect to observe that neural changes result-

ing from learning in one context would result in behavioral

changes in the other. This would suggest that covert learning

does transfer, and the corresponding neural activity would pro-

vide a glimpse at its mechanism. We note, however, that in this

study learning is measured through the lens of motor adaptation;

monkeys learn to adapt to a visuomotor rotation. Adaptation is

used here, as is commonly done in the literature, as one simple

subset of motor learning (Jarosiewicz et al., 2008; Huang et al.,

2011; Chase et al., 2012; Ranganathan et al., 2014; Mathis

et al., 2017). Thus, a conservative interpretation of our claims

concerning motor learning and its transfer, including any relation

to mental rehearsal, should be restricted to the transfer of adap-

tation. Nonetheless, recent evidence (e.g., Churchland et al.,

2012) suggests that the dynamical systems-based mechanism

that we describe in this study could generally be at work for other

more complex motor behaviors. The present experiments thus

set the stage for future studies of motor learning transfer in

skilled motor tasks.

In the present study, we provide key evidence that covert

learning does indeed transfer to overt performance. Concomi-

tantly, we propose a dynamical systems mechanism for motor

learning transfer. In particular, our analyses will reveal that overt

and covert movements derive from a common neural substrate,

which consists of motor preparatory activity. Our analyses will

also reveal that learning is consistent with manipulating this

preparatory activity, and the common substrate enables persis-

tence of these changes, hence facilitating learning transfer.

Furthermore, we find that this substrate is also common to neural
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activity recorded during contexts previously shown to be

engaged in mental rehearsal. While this does not prove that

our covert rehearsal paradigm is the same as mental rehearsal,

the neural and behavioral results suggest that our proposed

neural mechanism could generally be at work in other covert pro-

cesses. We will also argue that our covert rehearsal paradigm

can serve as a valuable tool for motor learning (and potentially

rehabilitation) in and of itself. Lastly, our results add to a growing

body of evidence that suggest a dynamical systems interpreta-

tion of motor cortex (Gallego et al., 2017), where in particular,

we now argue for a more fundamental role of motor preparation

in learning.

RESULTS

Two monkeys were trained to move a computer cursor from the

center of a virtual reality workspace to one of eight radially

arranged targets. Monkeys performed this task either overtly

using arm movements or covertly using a BMI (Figure 1A; Fig-

ure S1). The task appeared visually similar in both contexts as

the virtual reality setup occluded the monkey’s view of his reach-

ing arm. To directly test whether covert rehearsal can affect overt

performance, we used the degree of transfer of motor adaptation

to visuomotor rotations (VMRs) as an assay to study the relation-

ship between covert and overt movements (Krakauer et al.,

2000; Tanaka et al., 2009; Krakauer and Mazzoni, 2011).

We first measured VMR adaptation behavior in the overt

context (i.e., ‘‘overt-to-overt transfer’’) and then separately in

the covert context (i.e., ‘‘covert-to-covert transfer’’) to confirm

that our experiments replicated expected VMR adaptation. We

focus on VMR after-effects because this will subsequently be a

key measure of across-context learning transfer. When VMRs

were applied in the overt context, monkeys learned tomove their

arm at an angle (45�, 60�, or 90� relative to the non-rotated

condition) in order for the cursor to directly reach the target

(Figure 1B, task-flow). After adaptation, we removed the VMR

and measured cursor movement errors (i.e., after-effects). We

observed the well-known post-VMR adaptation after-effect:

monkeys initially reached in the opposite direction of the VMR,

took longer to reach the target, and had large angular errors

with respect to the straight-line direction to the target (Figures

S2A–S2D). For VMRs introduced during the covert context,

monkeys had to modulate neural activity to generate velocity

commands at an angle in order to move the cursor directly

toward the target. In this context, we ensured that no physical

movements were made by ensuring that the correlation between

any measured movement and the cursor movement (i.e., the

task) was negligible, i.e., r < ±0.1 (Figure S1). Results during

this covert context were also consistent with VMR adaptation

(Figures S2E–S2H). Thus, both overt and covert VMRs exhibit

well-established motor adaptation after-effects.

Motor Adaptation Transfers between Covert and Overt
Contexts
Next, we tested whether motor adaptation would transfer

across contexts by applying a VMR in the covert context, and af-

ter adaptation, switching to the overt context without rotation

(i.e., ‘‘covert-to-overt transfer’’; Figure 1B, bottom, cyan).
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Figure 1. Motor Adaptation Transfers between Covert and Overt Movement Contexts

(A) Monkeys performed a cursor movement task in one of two contexts: ‘‘overt,’’ where cursor velocity tracked hand velocity, or ‘‘covert,’’ where cursor velocity

was controlled by neural activity via a BMI. When a visuomotor rotation (VMR) was applied, the cursor’s movements were offset by the corresponding angle (q).

(B) Top: instructed delay task flow; bottom: experimental flow.

(C) Raw arm-controlled cursor trajectories (no VMRapplied) immediately following covert VMRmovements. Initial trajectories (red traces) exhibit curvature, which

indicates transfer of adaptation to the VMR that was applied during the preceding covert context.

(D) Histograms (first 100 trials of each session) of the error angle between the arm’s velocity (measured at the half-way radius toward the target) and the

vector from workspace center to the target. Colors represent conditions from (B). Vertical dashed lines show means of distributions, and horizontal solid lines

mean ± SEM. p values obtained from two-tailed Student’s t tests.

(E) Error angle over time for the same conditions as (D). Solid lines show mean.

(F) Number of trials needed to wash out VMR adaptation (i.e., reach 90% of control) during no-VMR overt (magenta) or covert (cyan) blocks is strongly

correlated with the degree of adaptation during the preceding covert block (VMR applied). Adaptation is defined as number of targets acquired per second in the

50 trials at the end of the VMR covert block (less the initial performance), normalized by the maximum performance across all blocks. Each point corresponds to

one post-VMR block.
Previous studies have been inconclusive regarding VMR adapta-

tions generalizing across contexts (Krakauer et al., 2000; Taylor

et al., 2002; Tanaka et al., 2009). However, we found that

monkeys’ overt reaches initially erred in the opposite direction

of the preceding covert context VMR (Figure 1C). The corre-

sponding error angles (Figures 1D and 1E) were significantly

larger than a control condition where arm reaches followed a

no-VMR covert block (Figure 1B, bottom, orange). This indicates

that VMR adaptation during the covert context did transfer to the

overt context.

While this behavioral effect was robust, its magnitude was

smaller than VMR adaptation observed within the overt-to-overt

context, both in terms of the error angle, and the rate of washout

(Figures S3A and S3B). This suggests that while there was reli-

able transfer, it was not ‘‘complete’’ transfer. We found no

significant relationship between the covert VMR angle and the

magnitude of the subsequent transfer to the overt context as

measured by initial error angle (Figure S3C). We did find that

greater adaptation during the covert context led to longer
washout both for subsequent covert and overt blocks (Figure 1F).

Interestingly, this relationship was similar regardless of which

context the learning occurred (covert and overt points lie along

the same line). This raises the possibility that covert and overt

adaptations could engage a similar neural process. Independent

from degree of adaptation, we also found that decoders

with higher absolute performance led to longer washouts (Fig-

ure S3C). This suggests that decoders more similar to the

‘‘manual decoder,’’ i.e., overt reaches, result in greater transfer

of learning. Taken together, these findings suggest that

covert rehearsal has strong effects on subsequent overt motor

behavior (and vice versa, i.e., ‘‘overt-to-covert transfer’’; Figures

S2I–S2L).

Learning Systematically Changes Motor Preparatory
Activity
Having established that transfer occurs, we investigated the

neural correlates of this behavior, in hopes of discovering a po-

tential mechanism. We were motivated to examine preparatory
Neuron 97, 1177–1186, March 7, 2018 1179
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Figure 2. Motor Adaptation Is Reflected in

Population-level Preparatory Activity

(A) Raw arm-controlled cursor trajectories

following adaptation to a VMR applied during

preceding covert use. Traces are divided into

the first 25% (gray) and the last 25% (black) of

trials.

(B) 200 ms of instructed-delay period activity from

a block of no-VMR baseline overt trials projected

into the top two PCs. Point clusters are three-trial-

averaged overt trajectories projected into the PC

state-space. Larger circles are cluster centroids.

Colors denote the eight target conditions and

match (A).

(C) Zoom into one condition from (A). Preparatory

activity projected into the corresponding region of

the PC state-space of (B). Gray/black points

correspond to reaches from (A). Neural states are

orthogonally projected onto the line connecting

the orange and red centroids from (B). Each point

is assigned a projection distance, where zero

distance denotes being at the cued-target cluster

centroid.

(D) Example orthogonal projections for all eight

conditions, aligned on the cued-target cluster

centroid (from B). Early after the switch from VMR covert use, preparatory states were closer to the ‘‘anti-VMR’’ target.

(E) Normalized neural distances (combined across reach conditions and sessions) plotted as a function of trials since the switch from covert VMR to overt no-VMR

contexts. Red shows the corresponding error angle. Inset compares the first 25%and the last 25%of trials. p values computed using theWilcoxon rank-sum test.
neural activity because of a growing body of behavioral (Johnson

et al., 2002; Sheahan et al., 2016) and neural (Paz et al., 2003;

Stavisky et al., 2017b) evidence showing a link between motor

preparation and adaptation. Concretely, we asked whether

adaptation transfer from the covert context was reflected in the

overt context population-level motor preparatory activity.

This activity is high dimensional, so we visualized it after

dimensionality reduction (Cunningham and Yu, 2014). We found

a low-dimensional state-space capturing over 80% of the co-

modulation in the baseline data (Figure 2B). We used this

state-space to visualize the delay period activity of overt trials

following the switch from a VMR adaptation covert block (Fig-

ure 1B cyan shows experimental condition, Figure 2A shows

behavior, Figure 2C shows neural projections for one example

target). A striking feature of these trials is that early after the

switch, preparatory states are shifted toward the neural state

corresponding to preparing to move toward the adjacent target

(i.e., the ‘‘anti-VMR’’ target). In other words, the monkey’s motor

plan is oriented in a direction that opposes the VMR from the pre-

vious block. We interpret this shift as evidence of residual adap-

tation reflected in the preparatory neural state. Quantifying the

preparatory states without dimensionality reduction confirmed

that immediately following the shift from the covert VMR block

(Figure 1, cyan condition), these states were biased in the direc-

tion of preparing reaches to the anti-VMR target. Over the

course of the washout, preparatory states gradually realigned

with the baseline states corresponding to reaches to the cued

target (Figures 2D and 2E). Consistent with these population re-

sults, we found that single neuron preferred directions (PDs)

rotated during learning in the direction corresponding to the

VMR. During the washout epochs, PDs reoriented back to base-

line (Figure S3D).
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These results demonstrate that: (1) adaptation to the VMR

systematically changes motor preparatory activity toward a

pattern known to prepare movements angled away from the

VMR. These changes enable the subjects to presumably adapt

to the VMR, i.e., neural and behavioral changes are strongly

correlated on a trial-by-trial basis (Figure 2E). (2) The preparatory

changes persist after switching from covert to overt contexts. (3)

This neural transfer effect washes out gradually rather than ex-

hibiting a sudden ‘‘reset’’ of the motor circuit, despite visual

and proprioceptive feedback (Shadmehr et al., 2010) and the

explicit context change of the experimenter removing the mon-

key’s arm restraint.

Covert and Overt Movements Share a Common Neural
Substrate
Taken together with previous findings (Cisek and Kalaska,

2004; Sobierajewicz et al., 2016), our population analyses

suggest that covert rehearsal may involve ‘‘practicing’’ the

appropriate motor system preparatory state, whereby behav-

ioral improvements due to learning are accompanied by corre-

sponding changes to the motor plan. This evidence dovetails

with recent work arguing that motor cortical preparatory activ-

ity functions as advantageous initial conditions for subsequent

peri-movement neural dynamics that generate the desired

movement (Churchland et al., 2006, 2012; Afshar et al.,

2011; Shenoy et al., 2013; Ames et al., 2014). We therefore hy-

pothesized that VMR adaptation transfer was due to covert

and overt contexts engaging a similar dynamical system,

where in particular both contexts utilized similar initial

conditions.

To test this, we first projected baseline overt context prepara-

tory activity into the baseline covert context preparatory activity
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Figure 3. Covert and Overt Movements Share Motor Preparatory States

(A) Percentage of shared variance between the overt context, covert context, andwatch (i.e., during decoder training) context neural data. Data from each context

are projected into the other contexts before the calculations are done. The subspaces were comprised of PCs (4 for Monkey R, and 6 for Monkey J), which

collectively captured over 90% of the neural variance. There is no pairwise statistical significance, as reported by the Wilcoxon rank-sum test.

(B) Example visualization of mean overt (circle) and covert (square) preparatory states projected into a two PC state-space. Colors represent reach conditions.

Dotted ellipses represent SEM.

(C) Pairwise statistical population overlap (for the full high-dimensional distributions); zero corresponds to complete statistical overlap. Note that diagonals are

close to zero.

(D) The degree of overlap between covert and overt states in the full dimensional space (measured in spikes per second) is correlated with the magnitude of the

transfer (error angle measured in degrees for the mean of the first five trials post-switch from covert to overt). Baseline overlap data and subsequent transfer data

were collected in the same sessions, with similar parameters (i.e., trial counts, VMR angle, etc.). p values computed using the F-test, and test the hypothesis of no

correlation.
neural state-space. We found that population covariance pat-

terns explaining most of the preparatory activity was shared be-

tween the covert and overt contexts (Figure 3A). Furthermore,

the neural states corresponding to preparing either covert or

overt movements to each target were well aligned (Figure 3B).

We quantified this for full-dimensional population activity and

found that covert and overt neural states, when preparing

movements to a given target, were significantly more similar to

each other than to any other target (near-zero diagonal in Fig-

ure 3C). Finally, we also found that the degree towhich the covert

and overt states overlapped (on a session-by-session basis)

significantly predicted the magnitude of learning transfer for

that session, where greater overlap led to greater transfer

(Figure 3D).

Previous findings have demonstrated that monkeys watching

cursor movements elicit neural activity consistent with mental

rehearsal. Since we trained our decoders using this neural

activity, we compared preparatory activity during this cursor-

observation period to preparatory activity recoded during

covert rehearsal and overt movements. We found that just as

covert and overt movements shared preparatory states,

observed movements also derive from that common subspace

(Figure 3A, ‘‘watch’’ condition). These results suggest that at

least at the preparatory level, overt behavior shares neural
operation with both covert rehearsal and putative mental

rehearsal.

Together these findings suggest the following potential mech-

anism for VMR transfer. During covert movements in the pres-

ence of a VMR, the sensorimotor system gradually shifts the

delay period initial conditions to align with the direction opposing

the VMR. We suspect that these changes contribute to the

observed VMR adaptation. When the behavioral context

switches from covert to overt, two key properties are preserved:

(1) the sensorimotor system uses the same neural subspace to

prepare cursor movements, and (2) changes in which prepara-

tory state is associated with which cued target persist across

the context change. This persistence likely causes subsequent

arm movements to be rotated in the direction opposing the

VMR, i.e., learning transfer. Asmonkeys continue tomakemove-

ments without any VMR, a similar adaptation process reorients

the preparatory neural activity back to baseline. The correspond-

ing arm kinematics return to normal once their preparatory initial

conditions have reoriented.

This mechanism makes two testable predictions: (1) covert

rehearsal should ‘‘pre-train’’ a motor task, and thus require fewer

overt trials to learn, and (2) covert rehearsal should achieve this in

part by ‘‘pre-rotating’’ the preparatory states to align with the

cued target. We tested these predictions by evaluating whether
Neuron 97, 1177–1186, March 7, 2018 1181
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Figure 4. Covert Rehearsal Can Enhance

Overt Motor Learning

(A) Top: experimental flow. Bottom: purple traces

show overt arm trajectories with a �45� VMR

applied following a no-VMR overt block. Green

traces show overt �45� VMR arm trajectories

following a covert �45� VMR block. The rehearsed

green trajectories are more direct.

(B) Histograms of error angles for the two condi-

tions. Colors matched to (A). p values were ob-

tained from two-tailed Student’s t tests.

(C) Comparison of rehearsed and non-rehearsed

normalized preparatory neural state-space dis-

tance (as described in Figures 2B and 2C) as a

function of trial number. Preparatory states start

more adapted after covert rehearsal. Data averaged

across sessions and reach conditions. Insets show

strong correlation between individual trials’

normalized preparatory distance and subsequent

error angle (p < 0.05).
monkeys adapted to a VMR in the overt context faster if they first

covertly rehearsed the VMR (Figure 4A, top). Compared to

overtly adapting (i.e., no rehearsal), we found that covert

rehearsal resulted in significantly straighter subsequent arm

trajectories (Figures 4A and 4B). The neural correlates of this pro-

cess were also consistent with our prediction: covert rehearsal

rotated the preparatory states part way to the fully adapted

states, such that overt motor learning required fewer trials to

approach the adaptation asymptote (Figure 4C). We observed

strong and significant trial-by-trial correlation between the

post-rehearsal preparatory state and the behavioral error angle,

suggesting that the magnitude of neural changes achieved by

rehearsal predicts subsequent improvements in overt motor

function (Figure 4C, inset).

The neural mechanism proposed here for the transfer of

learning raises an important question: if the preparatory states

(i.e., the initial conditions) are similar between overt and covert

contexts, shouldn’t the underlying dynamical system also be

similar? This would suggest a mechanism by which transfer of

initial conditions results in movement behavior differences. To

test this, we started by repeating the analysis from Figure 3A

for the ‘‘during movement’’ epochs and found that population

covariance patterns explaining most of the movement period

neural activity were shared between the covert and overt

contexts (Figure S4A). Next, we explicitly fit a linear dynamical

system to covert cursor movement data and used the initial

condition from the overt context to predict the trial-averaged

neural trajectory during subsequent reaching. We found the

predicted neural trajectories to be highly similar to overt context

trajectories (Figure S4B). Finally, we found that the brief but

strong oscillatory component in the neural population responses

observed during overt reaches (Churchland et al., 2012)
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were also present in the covert data, albeit

predominantly the low-frequency compo-

nents. Together, these findings lend sup-

port for an interpretation that overt and

covert movements not only are generated
by a common neural substrate, but also potentially engage a

similar dynamical machine.

DISCUSSION

In this study, we investigated whether learning in a covert para-

digm, where no movements are made, can transfer to overt per-

formance. Concomitantly, we studied the neural mechanism that

mediates such transfer. Our experiments revealed that learning

in a BMI-guided covert context does indeed transfer to overt

performance, both in terms of post-adaptation after-effects, as

well as ‘‘pre-training’’ a motor skill in order to accelerate overt

improvements. Our analyses also revealed a dynamical systems

mechanism for motor learning transfer. We note that our data

show correlation, not causation, in support of this mechanism.

However, we believe the significant correlation that we observed

on a trial-by-trail basis between the degree of preparatory state

rotation and the kinematic error angle (Figures 2E and 4C), the

overlap between covert, overt, and observation-only preparatory

states (Figures 3A–3C), as well as the significant correlation be-

tween the preparatory state overlap and the subsequent magni-

tude of transfer (Figure 3D), point to the preparatory states likely

being necessary for motor learning transfer. This causality could

be evaluated in future studies by inactivating preparatory activity

prior to movement onset and measuring its effect on learning

transfer.

Our preparatory activity findings also touch upon a more

fundamental role of motor preparation (Allen et al., 2017; Chen

et al., 2017; Makino et al., 2017). The current dynamical systems

view of motor cortex ascribes motor preparation to setting the

initial state from which neural activity naturally evolves (i.e.,

guided by lawful rules), presumably to cause movement. This



interpretation argues different initial states as being used to pro-

duce different movements (Shenoy et al., 2013). Moreover, pre-

vious results found that the natural variability in the setting of the

preparatory state correlates with reaction time (Afshar et al.,

2011). That is, a state ‘‘closer’’ to the desired movement results

in faster movements. While the causality of these initial condi-

tions has not yet been established, recent results show that

incorrect motor preparation needs to be ‘‘corrected’’ before

executing desired movements, albeit not by complete re-plan-

ning (Ames et al., 2014). Taken together with our present

findings, perhaps a major part of learning can be viewed as the

process by which the motor system finds the optimal set of initial

conditions that produces the best possible subsequent move-

ment. The fact that we observe motor learning transfer suggests

that motor cortex has the ability to perform this manipulation

even in the absence of muscle activity. This view is consistent

with studies arguing that motor cortex performs important

work in ‘‘muscle-null’’ neural dimensions (Kaufman et al., 2014;

Stavisky et al., 2017a). Furthermore, recent human results

demonstrate that motor preparation, and not execution, helps

separate interfering motor memories (Sheahan et al., 2016).

The neural correlates of this process could be consistent with

the mechanism described in the present study, especially given

recent findings that the dynamical systems features of motor

cortex are conserved between humans and non-human pri-

mates (Pandarinath et al., 2015).

Our study also presents evidence that a similar dynamical

machine is in operation for both overt and covert movements

(Figure S4). While on one hand this could explain why prepara-

tory activity plays a central role for learning transfer, on the other

hand it raises questions about the precise role of M1 (Miri et al.,

2017). Why should a dynamical system for a context where no

overt movements are made be largely similar to one that gener-

ates strong activity for overt movements?One explanation is that

these brain regions are primarily concerned with high-level

movement intentions, which are shared between the tasks (i.e.,

directing the cursor to the target). Certainly, the prosthetics

community has benefitted from using the strong velocity-related

signals present in M1 (Kao et al., 2014). Future studies recording

from other and/or deeper areas could reveal more pronounced

differences between overt and covert movements and help

contextualize the present results. Another possibility is that our

undoubtedly simplified model of motor cortex as a low-dimen-

sional linear dynamical system does not capture differences be-

tween the contexts that explain a relatively low fraction of the

variance but have important effects upon the true, nonlinear

dynamical system.

Another contribution of this study is the use of BMIs to

describe a ‘‘covert rehearsal’’ paradigm. While we cannot

directly assert that covert rehearsal is the same as mental

rehearsal, or any other covert process for that matter, we believe

that this paradigm is a reasonable strategy for studying motor-

related internal processes. First, the fact that covert rehearsal

enhances overt performance suggests that, at the very least, it

engages some common subset of motor skills and their associ-

ated neural machinery, without the need for overt practice.

Second, we found that the performance of the BMI decoder

strongly correlated with degree of learning transfer (Figure S3C).
This resonates with reports of mental rehearsal being more

effective when performed with more vivid imagery (Ryan and

Simons, 1982), and more realistic rehearsal results in better

transfer (Hwang et al., 2013). In particular, we found that

even in rare cases of poor decoding performance, monkeys

were still able to learn the rotation, albeit with a small degree

of learning transfer. Our results suggest that the reduction in

the magnitude of transfer is likely a result of the poor perform-

ing decoder causing the monkeys to practice a noisier version

of the true neural pattern, while still allowing adaptation;

increasing the trial counts to overcome this noise could poten-

tially boost the magnitude of transfer. This is consistent with the

view that the decoder was still built in a ‘‘biomimetic’’ fashion

(Shenoy and Carmena, 2014). A non-biomimetic decoder, on

the other hand, would likely result in the monkeys cognitively

learning the rotation, but the rehearsed pattern would funda-

mentally differ between contexts, thus resulting in a small de-

gree of transfer regardless of trial count. Future studies could

readily investigate this prediction. This would also reconcile

the difference between our study and those that find that

learning does not generalize across certain contexts, e.g.,

reach direction (Krakauer et al., 2000). We speculate that in

those studies, the learning focused on rehearsing patterns of

activity that were not common to the new context. If so, even

with a predominantly biomimetic decoder, no transfer should

be expected. In contrast, in our study, the same task was pre-

sented and performed in both contexts, and our analyses re-

vealed that generalization likely occurred due to a similar

dynamical machine being engaged during both contexts.

Third, we found that not only do covert and overt move-

ments share a large degree of preparatory activity variance,

but the same holds for neural activity recorded during observa-

tion of cursor movements. Previous findings defined such

observation as mental rehearsal (Cisek and Kalaska, 2004).

Thus, at least at the preparatory level, covert movements,

overt movements, and mental rehearsal derive from a common

substrate. Finally, we constructed our decoders using neural

activity from the observation epochs. The fact that monkeys

could use decoders to make successful cursor movements im-

plies that during covert rehearsal they engage neural activity

similar to that during decoder training (i.e., putative mental

rehearsal), albeit with visual feedback. Taken together, this

evidence suggests that mental rehearsal could engage a

similar dynamical systems mechanism to the one described

here, even if only at the motor preparation level, for facilitating

motor learning transfer. Of course, learning could just be a pro-

cess of refining motor preparation (via above-mentioned argu-

ment). From this view, the covert rehearsal paradigm provides

a much-needed new avenue for studying covert processes.

We note however that in contrast to classical mental rehearsal,

the covert rehearsal paradigm is closed-loop. Thus, subjects

use visual feedback to help guide producing neural activity

patterns associated with overt movements. Future studies

will need to evaluate the role of sensory feedback (Liu and

Scheidt, 2008; Shabbott and Sainburg, 2010; Suminski et al.,

2010), both in terms of its relation to mental rehearsal, and in

terms of how best to take advantage of covert rehearsal to

guide overt improvement.
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One important caveat in this study is that we used VMR adap-

tation as a specific instance of motor learning because it is

amenable for reductionist experiments and has a rich prior liter-

ature. It is possible that VMR adaptation is learned and poten-

tially transferred by a different mechanism than complex skilled

movements, and thus the generalization of our results to other

forms of motor learning remains an open question. However,

previous studies have implicated motor preparatory activity as

initializing peri-movement neural dynamics in more complex

arm reaching behavior (e.g., Churchland et al., 2012). Thus, we

speculate that complex motor skill learning, including learning

from covert rehearsal, also involves changes in preparatory ac-

tivity, as seen in VMR adaptation. Future studies could compare

whether motor preparatory state is the substrate for learning

transfer for more complex skilled movements.

BMI tasks designed to be similar to desired overt motor skills

can also be valuable tools in and of themselves with a variety of

translational applications. For example, in a rehabilitation appli-

cation, a patient could be instructed to imagine or attempt to

make movements. The patient would receive sensory feedback

about how accurately they are modulating their neural activity,

perhaps by their arm being moved by external means (Ajiboye

et al., 2017), and could iteratively refine subsequent attempts.

A second application could use covert rehearsal as a tool to

accelerate motor skill learning (for example, a surgical or flight

simulator) by allowing safe, targeted, and frequent practice, aug-

menting existing simulators that provide feedback only on the

movement output, rather than the neural output associated

with the motor skill. In summary, we used BMIs as a window

into previously inaccessible covert mental processes to discover

a common neural substrate between covert and overt move-

ments that facilitates motor learning transfer.
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Prsa, M., Galiñanes, G.L., and Huber, D. (2017). Rapid Integration of Artificial

Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

Neuron 93, 929–939.e6.

Ranganathan, R., Wieser, J., Mosier, K.M., Mussa-Ivaldi, F.A., and Scheidt,

R.A. (2014). Learning redundant motor tasks with and without overlapping di-

mensions: facilitation and interference effects. J. Neurosci. 34, 8289–8299.

Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mecha-

nisms underlying the understanding and imitation of action. Nat. Rev.

Neurosci. 2, 661–670.

Ryan, E., and Simons, J. (1982). Efficacy of mental imagery in enhancing

mental rehearsal of motor skills. J. Sport Psychol. 4, 41–51.

Sadtler, P.T., Quick, K.M., Golub, M.D., Chase, S.M., Ryu, S.I., Tyler-Kabara,

E.C., Yu, B.M., and Batista, A.P. (2014). Neural constraints on learning. Nature

512, 423–426.

Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D.,

Thorpe, K.E., Cohen, L.G., and Bayley, M.; Stroke Outcome Research

Canada (SORCan) Working Group (2010). Effectiveness of virtual reality using

Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial

and proof of principle. Stroke 41, 1477–1484.

Shabbott, B.A., and Sainburg, R.L. (2010). Learning a visuomotor rotation:

simultaneous visual and proprioceptive information is crucial for visuomotor

remapping. Exp. Brain Res. 203, 75–87.

Shadmehr, R., Smith, M.A., and Krakauer, J.W. (2010). Error correction, sen-

sory prediction, and adaptation in motor control. Annu. Rev. Neurosci.

33, 89–108.

Sheahan, H.R., Franklin, D.W., and Wolpert, D.M. (2016). Motor planning, not

execution, separates motor memories. Neuron 92, 773–779.

Shenoy, K.V., and Carmena, J.M. (2014). Combining decoder design and neu-

ral adaptation in brain-machine interfaces. Neuron 84, 665–680.

Shenoy, K.V., Sahani, M., and Churchland, M.M. (2013). Cortical control of arm

movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36,

337–359.

Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G.,

Turolla, A., Piccione, F., and Birbaumer, N. (2011). Brain-computer interface

in stroke: a review of progress. Clin. EEG Neurosci. 42, 245–252.
Neuron 97, 1177–1186, March 7, 2018 1185

http://refhub.elsevier.com/S0896-6273(18)30065-5/sref10
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref10
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref10
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref11
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref11
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref12
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref12
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref13
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref13
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref14
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref14
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref15
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref15
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref16
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref16
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref17
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref17
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref17
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref18
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref18
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref18
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref18
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref19
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref19
https://doi.org/10.1038/s41593-018-0095-3
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref20
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref20
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref21
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref21
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref21
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref22
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref22
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref23
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref23
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref23
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref23
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref24
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref24
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref24
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref25
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref25
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref25
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref26
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref26
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref26
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref27
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref27
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref28
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref28
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref28
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref29
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref29
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref29
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref31
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref31
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref31
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref32
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref32
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref32
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref33
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref33
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref33
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref33
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref34
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref34
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref34
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref34
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref35
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref35
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref35
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref36
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref36
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref36
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref36
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref37
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref37
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref37
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref37
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref38
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref38
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref38
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref39
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref39
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref39
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref40
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref40
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref40
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref41
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref41
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref41
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref42
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref42
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref42
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref43
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref43
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref44
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref44
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref44
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref45
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref45
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref45
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref45
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref45
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref46
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref46
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref46
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref47
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref47
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref47
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref48
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref48
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref49
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref49
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref50
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref50
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref50
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref51
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref51
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref51


Sobierajewicz, J., Szarkiewicz, S., Przekoracka-Krawczyk, A., Ja�skowski,

W., and van der Lubbe, R. (2016). To what extent can motor imagery

replace motor execution while learning a fine motor skill? Adv. Cogn.

Psychol. 12, 179–192.

Stavisky, S.D., Kao, J.C., Ryu, S.I., and Shenoy, K.V. (2017a). Motor cortical

visuomotor feedback activity is initially isolated from downstream targets in

output-null neural state space dimensions. Neuron 95, 195–208.e9.

Stavisky, S.D., Kao, J.C., Ryu, S.I., and Shenoy, K.V. (2017b). Trial-by-trial mo-

tor cortical correlates of a rapidly adapting visuomotor internal model.

J. Neurosci. 37, 1721–1732.
1186 Neuron 97, 1177–1186, March 7, 2018
Suminski, A.J., Tkach, D.C., Fagg, A.H., and Hatsopoulos, N.G. (2010).

Incorporating feedback from multiple sensory modalities enhances brain-ma-

chine interface control. J. Neurosci. 30, 16777–16787.

Tanaka, H., Sejnowski, T.J., and Krakauer, J.W. (2009). Adaptation to visuo-

motor rotation through interaction between posterior parietal and motor

cortical areas. J. Neurophysiol. 102, 2921–2932.

Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B. (2002). Direct cortical control of

3D neuroprosthetic devices. Science 296, 1829–1832.

Warner, L., andMcNeill, M.E. (1988). Mental imagery and its potential for phys-

ical therapy. Phys. Ther. 68, 516–521.

http://refhub.elsevier.com/S0896-6273(18)30065-5/sref52
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref52
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref52
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref52
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref52
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref53
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref53
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref53
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref54
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref54
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref54
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref58
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref58
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref58
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref55
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref55
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref55
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref56
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref56
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref57
http://refhub.elsevier.com/S0896-6273(18)30065-5/sref57


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Mucacca mulatta) Wisconsin and Yerkes

Primate Centers

N/A

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

Simulink RealTime Mathworks https://www.mathworks.com/products/simulink-real-

time.html

Other

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-

products/neural-data-acquisition-systems/cerebus-daq-

system/

Utah microelectrode arrays Blackrock Microsystems http://blackrockmicro.com/electrode-types/utah-array/

Polaris optical tracking system Northern Digital https://www.ndigital.com/medical/products/polaris-

family/
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Saurabh
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recordings were made from motor cortical areas of two male adult monkeys (Macaca mulatta), R (15 kg, 12 years old) and J (16 kg,

15 years old), while they performed an instructed delay cursor task in one of two contexts (Figure 1A). Use of two animals is standard

practice in the field. Each monkey had two chronic 96-electrode arrays (1 mm electrodes, spaced 400 mm apart, Blackrock

Microsystems), one implanted in the dorsal aspect of the premotor cortex (PMd) and one implanted in the primary motor cortex

(M1). The arrays were implanted 5 years and 7 years prior to these experiments for monkey R and J respectively. Voltage signals

were band-pass filtered from each electrode (250 Hz – 7.5 KHz). These signals were processed to detect multi-unit ‘‘threshold

crossing’’ spikes. We detected spikes whenever the voltage crossed below a threshold of�4.5 times the root-mean-square voltage.

In this study, we do not spike sort, or assign spikes to individual neurons. In our view, this is justified due to three reasons: first, multi-

unit spike trains are the standard signal used in the BMI literature; second, our scientific claims rely on the motor-cortical population

activity, which includes both single- andmulti-unit activity; finally, decoding bothmulti-unit spikes as well as well-isolated single units

can potentially increase the amount of information available on chronically implanted electrode arrays (Pandarinath et al., 2015, 2017;

Oby et al., 2016; Stavisky et al., 2017a). Animal protocols were approved by the Stanford University Institutional Animal Care and Use

Committee.

METHOD DETAILS

Task design
Monkeys performed instructed-delaymovements in one of two contexts as described in Figure 1A. Our standardmethods have been

previously described (Gilja et al., 2012; Shenoy et al., 2013; Ames et al., 2014). In the ‘overt’ context, both monkeys performed a

Radial 8 Task, where they reached using their contralateral-to-arrays arm in order to move a computer cursor in virtual reality (latency

of 7 ± 4 ms). Eight targets were arranged radially in a 2D circle, along with an additional target at the center of the circle. Monkeys

started by holding the cursor on the central target continuously for 500ms. After a variable instructed delay period (sampled uniformly

from 400 – 800 ms), monkeys moved the cursor within a 43 4 cm acceptance window of the cued target. This target also had to be

held continuously for 500 ms. The target changed color to signify the hold period. If the cursor left the acceptance window, the timer

was reset, but the trial was not immediately failed. Monkeys had 2 s to acquire the target. Success was accompanied with a liquid

reward, alongwith a success tone. Failure resulted in no reward, and a failure tone. Regardless, the center target was then presented,
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which the monkeys had to acquire in a similar fashion as above. The period starting from the instructed delay and ending with the

target acquisition (or failure) constituted a trial.

In order to train monkeys to perform the instructed-delay task, we used the following protocol. First, we jittered the cued target

during the entire instructed delay period as ameans to indicate the beginning and end of the period. Second, monkeys were required

to limit cursor velocity to a maximum of 1 mm/s during the delay period. Violating this condition automatically resulted in a failure.

During training, we increased the time between a failed trail and the beginning of the next trial to 5 s to discourage failures. By com-

parison, the time between a successful trail and the subsequent trial was 20 ms. In the ‘covert’ context, the same task design was

used, with the exception that monkeys’ arms were comfortably restrained and they had to control the cursor velocity using a BMI by

modulating their neural activity.

The keymanipulation on the Radial 8 Taskwas to introduce a visuomotor rotation (VMR), parametrized by angle q. This consisted of

rotating the cursor position q degrees counter-clockwise around the workspace origin. In order to acquire targets in these cases,

monkeys had to move their arm (overt context) or modulate neural activity (covert context) in a fashion that would ordinarily move

the cursor at an angle -q relative to the cued target. Thus, monkeys had to apply e.g., a clockwise rotation in order to counter the

effect of the counter-clockwise VMR. Monkeys received constant visual feedback, so they could correct their cursor trajectories

during learning. We used four VMR angles in this study: �45�, 45�, 60�, and 90�.
In order to encourage the monkeys to ‘‘try hard’’ to adapt to the VMR (rather than accepting making highly curved and inefficient

movements to targets), we employed the following strategy. First, we decreased the maximum reach time every 500 trials (on

average) from 10 s initially to 1.5 s in the last 500 trial block. In later sessions, we started from 3 s. Second, we introduced a path

efficiency check, where we automatically failed a trial if the maximum orthogonal deviation (relative to the straight-line distance to

the cued target) exceeded a bound. The experimenter manipulated this bound, making it more challenging, as a function of time.

This factor in particular played a critical role in eliciting precise behavior which led to the effects described in Figure 1.

In order to perform the experiments described in Figure 1 (experimental flow in Figure 1B), we used the following protocol. For the

control conditions, monkeys were arm-restrained and used a BMI (under no VMR) for 2000 ± 1000 trials of the Radial 8 task. This

typically took 90 min. After this adaptation phase, the experimenter went into the monkey’s room and removed the restraint of the

arm contralateral to the arrays. This readied the overt context (still with no VMR), in which the monkey performed the Radial

8 task for 500 trials. For the experimental conditions the same procedure as the control experiment was followed, with the one change

that during BMI use, a VMR was introduced. Both control and the experimental conditions were performed within the same

experiment session. We analyzed a minimum of four sessions for each analysis, with alternating order of control and experimental

blocks. The experiments described in Figure 4 followed a similar flow, with two changes. First, the control comprised of only overt

arm reaches in the presence of a VMR. Second, the experiment comprised of first using the BMI (in the presence of the same VMR as

the control) for 2000 ± 1000 trials of the Radial 8 task, followed by a block of overt reaches in the presence of the same VMR. The

precise number of trials for all of these experiments was based in part on the monkey’s degree of VMR adaptation as qualitatively

assessed by the experimenter at each session. To minimize day-to-day or residual adaptation effects, monkeys started and ended

each session with overt arm reaches without VMR. Sessions were excluded from analysis if effects from savings or interference were

observed during the first 500 trial baseline block.

BMI decoder fitting
In order to train the BMI decoder at each session, we adapted the recalibrated feedback-intention trained Kalman filter (ReFIT)

procedure (Gilja et al., 2012). At the start of each session, monkeys observed 200 trials of Radial 8 automated cursor movements

from the center of the workspace to one of 8 radially arranged targets at a distance of 12 cm. We performed three such blocks of

200 trials, each block with cursor velocity of 8, 10, and 12 cm/s.We used the neural and kinematic data from these blocks to estimate

a position and velocity Kalman filter. Since BMI performance is sensitive to velocity gain, we manipulated this gain (i.e., scaling from

neural activity to cursor velocity) on a session-by-session basis so as to help the monkey balance three factors: being able to

successfully hold the center during the delay period (which benefits from low gain), moving in as straight a line as possible during

the movement period (which benefits from low gain), and reaching the target as quickly as possible (which benefits from high

gain). This procedure was followed for all Monkey J sessions.

Monkey R has poorer signal quality, and thus on roughly 50% of the sessions, the initial decoder (estimated the same was as done

for Monkey J) was used by monkey R in closed-loop to perform another 200 Radial 8 task trials. These data were used by the final

Kalman Filter decoder, estimated using the ReFIT algorithm. We again manipulated the gain of the decoder to strike a balance

between performance and ease of accomplishing the instructed delay period (i.e., staying below the 1 mm/s requirement during

the delay period). For the other 50% of sessions for Monkey R, we built a decoder in a similar fashion as was done for Monkey J.

We found no difference in the scientific findings by using the ReFIT decoder (versus the standard Kalman filter) for Monkey R. In

our decoders, no distinction was made between PMd and M1; all neural data were used jointly.

Residual movement tracking
While monkeys performed covert movements (via the BMI), we tracked the position of various body parts using infrared video

cameras at a rate of 24 frames per second. Three cameras were positioned such that the dorsal forearm, the hand, the fingers,

the rhomboids and deltoids regions, the pectorales and deltoid regions, and the shoulder, biceps, and triceps regions were visible,
e2 Neuron 97, 1177–1186.e1–e3, March 7, 2018



and took upmost of the field-of-view. We used an open source implementation of the Lucas-Kanade optical flow algorithm (Liu et al.,

2009) in order to estimate a velocity for each pixel from frame-to-frame. In order to ascribe a single velocity for each frame, we aver-

aged the horizontal and vertical components (individually) of the velocity for all pixels in the field-of-view.We used intentionally placed

physical landmarks visible in the videos to convert pixel coordinates into real-world coordinates. Finally, we used the millisecond-

level timestamp from each frame to associate it with each individual trial. This analysis is presented in Figure S1.

An alternative way to perform these control experiments could be to use an EMG preparation as done in many of our prior studies,

e.g., (Kaufman et al., 2014). After consideration, we believe that a computer vision approach is more appropriate in this study primar-

ily because we want to simultaneously monitor multiple muscles. While it is possible that the animals’ muscles sometimes undergo

isometric co-contractions, which would result in minimal visible movement while still producing muscle activity, this is quite unlikely

for three primary reasons: (1) given the number of hours of BMI experiments the animals must do, it is quite unlikely that they sustain

co-contractions for that long as it is energetically expensive (i.e., very tiring), (2) even if there are isometric co-contractions, the shape

of themuscles changes slightly, which can bemeasured at our camera working distance, which has hundreds of pixels for each anat-

omy of interest, and finally (3) co-contracting would not help the animals anyway because in order to affect the cursor movement, the

muscle activity would need to systematically vary as a function of target direction; such distinct patterns of co-contractions would be

picked up by our cameras. Thus, we believe that our approach well assesses the degree to which correlated movements are made

during the covert context, and has the key advantage over EMG of being less likely to ‘‘miss a muscle’’ when measuring.

Preparatory neural state analysis
All of the analyses in Figure 2 and Figure 3 examine motor cortical preparatory neural states using a standard application of Principal

Components Analysis (PCA). In brief, neural data were arranged into a datamatrix comprising of neural firing rates of every neuron for

every condition for every time point. We only looked at 200 ms worth of time points at the end of the instructed delay period. We then

applied PCA on this data matrix. This results in a low-dimensional representation capturing the naturally occurring co-modulation in

the data. Figure 2B is a visualization produced by applying this procedure on a block of no-VMR overt trials. For each condition, trials

(averaged in a bin of size three) were projected onto the top two PCs. These are 500 baseline trials that were collected at the begin-

ning of the experimental session.

In the behavioral data (Figure 2A) we observed that overt no-VMR trials following a block of covert trials with a VMR initially erred in

the direction corresponding to the adjacent target in the opposite direction of the VMR. In order to do a similar analysis on the neural

data, we fit a line between the centroids of neural data (recordedwhile the animal prepared reaches) to pairs of targets fromFigure 2B.

We then projected trial-averaged (5 trials) firing rates corresponding to overt reaches (after adapting to a VMR under the covert

context), directly onto that line. These projections are shown in Figure 2C. We established a normalized distance metric so that trials

can be combined across reach conditions and sessions. Concretely, trials that were projected directly onto the centroid correspond-

ing to the cued target are assigned a distance of 0, whereas trials projected directly onto the centroid of the target in the opposite

direction of the cued target are assigned a distance of 1. Figure 2D shows this visually for all eight conditions, and Figure 2E shows

the statistics across all reach conditions and sessions.

In Figure 3A we use PCA in the same fashion to compute the cumulative variance captured by each individual PC. We find that

4 PCs (in Monkey R) and 6 PCs (in Monkey J) capture over 90% of the variance in the data. In order to find the amount of shared

neural variance between overt and covert behaviors, we project the 4 PCs (6 in Monkey J) from the overt context onto the 4 PCs

(6 in Monkey J) of the covert context, and compute the inner product, normalized by the amount of total variance captured by

each PC. Vice-versa gives the shared variance between covert and overt. A similar procedure was performed (not reported here)

where both sets of data were combined and a joint subspacewas found.We found no significant difference between the joint analysis

and the analysis presented in Figure 3. The same procedure was followed for the pairwise comparisons for the ‘watch’ condition. The

same procedure was followed for Figure S4A.

Statistics
For all histograms (Figure 1, Figure 4, and Figure S2), the significances of the differences in the distributions were determined with

two-tailed Student’s t tests, assuming non-equal variances of the two samples. We confirmed that each histogram followed a normal

distribution using the Kolmogorov-Smirnov test. For data that did not follow a normal distribution, we used the Wilcoxon rank-sum

test (Figure 2, Figure 3, and Figure S3), using the paired (i.e., signed) test where appropriate. For all linear regressions (Figure 1, Fig-

ure 3, Figure 4, Figure S1, and Figure S3) we used the F-statistic to assess the significance level of the slopes being different from

zero. Partial correlations were used to rule out influence from other experimental parameters. In Figure S3, we compared the slopes

using a two-tailed Student’s t test. In Figure 3 we measured the statistical overlap between the populations using the Bhattacharya

coefficient, normalized such that 1 indicates no statistical overlap. For all tests, we used p = 0.05 as the significance threshold.
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